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A note on the geometry of connections in gauge theories of 
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Abstract. It is shown that in gauge theories of the electroweak interaction, the symmetry- 
breaking process always defines a genuine connection on the electromagnetic sub-bundle. 

1. Introduction 

It is well known that the theory of fibre bundles provides a natural and useful framework 
for the formulation of classical field theory. This approach has significantly improved 
our understanding of a number of quite fundamental aspects of gauge theory, such 
as the relationship between the gauge transformations of the first and second kinds. 
More recently, the concept of symmetry breakdown has also been analysed in these 
terms (Madore 1977, Trautman 1979). If (PMG) is a principal fibre bundle over a 
space-time M, corresponding to a gauge group (structural group) G, and if H is a 
closed subgroup of G, then the breakdown of G to H may.be interpreted as the 
reduction of (PMG) to a sub-bundle of the form (QMH). Such a reduction exists if 
and only if the associated bundle (EPMG, G/H) with standard fibre G/H admits a 
global cross-section 8: M + E (Kobayashi and Nomizu 1963). This cross-section can 
also be interpreted as a global cross-section of a certain vector bundle. The pull-back 
(by means of local cross-sections of P) of the function on P to which this cross-section 
is equivalent, corresponds to the ‘symmetry-breaking’ scalar fields such as the Higgs 
fields (Trautman 1979). Thus, the geometrical approach allows us to understand the 
origin of the ‘symmetry-breaking’ fields. 

Upon the breakdown of G to H, the gauge fields A; corresponding to G define 
two sets of new fields. Firstly, they define a set of massive fields with homogeneous 
transformation behaviour under the action of H; and secondly, they define the gauge 
fields corresponding to H. The geometrical meaning of this latter procedure has been 
formulated by Madore (1977) in terms of the theory of connections on principal 
bundles. Here we shall examine this question in detail in the case of gauge theories 
of the electroweak interaction. We shall prove that for all electroweak theories based 
on semisimple gauge groups or on groups of the form (semisimple) U(1), the gauge 
fields which survive symmetry breakdown do indeed define a genuine connection on 
the appropriate sub-bundle. 
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2. The splitting of the connection 

Let (PMG) be a principal bundle over a space-time M, with structural group G. Let 
w be a Lie algebra valued one-form on P, defining a connection r. The gauge potential 
and field tensor are then given as usual by the pull-backs A = u * w ,  F = 2a*Dw, where 
D denotes the covariant exterior derivative, and where u is a local cross-section of 
P. Now let G break down to a closed subgroup H, so that a sub-bundle of the form 
(QMH) is defined. As remarked above, the connection in the sub-bundle is determined 
by that in (PMG): for example, in the model of Weinberg (1967) and Salam (1968), 
the photon field is constructed from the SU(2)XU(1) gauge fields. If {Ti} is a basis 
for the Lie algebra of SU(2) x U(l)  (with T4 as the hypercharge generator) then the 
connection form on the SU(2) x U(1) bundle may be written as 

w = w ' T I  + w2Tz +03T3 + w4T4 

= w 'T i  + w2T2 +$(U +U' ) (  T3 + 7 '4 )  +$(U - w4) (  T3 - T4). (1) 

Regarding $(T3 + T,) as the generator of the electromagnetic subgroup, we see that 
the coefficient of the 'charge component' of w is just w3+w4. But this form, when 
pulled back to space-time, is just the electromagnetic field (potential) A: +A:. That 
is, the connection in the electromagnetic sub-bundle is just the charge component of 
the restriction of o to that sub-bundle. 

Returning to the previous case, Madore (1977) has pointed out that this observation 
is quite general. If (PMG) and (QMH) are as above, we can regard the Lie algebra 
fi of H as a subalgebra of the Lie algebra 6 of G. Splitting 6 into a direct sum 

= f I O N ,  we can also split w in the same way. The gauge fields corresponding to 
H are obtained as the pull-backs, by means of local cross-sections of Q, of the 
fI-component of the restriction of w to Q. Denoting this restriction by wQ, we write 

f . L Q = W f A ,  (2) 
where G and A are the fi and N components of WQ. The question now is whether 0 
is a connection form on the sub-bundle (QMH).  The conditions for this will be 
discussed in the next section. 

3. Conditions on G and H. The electroweak case 

The question of whether W, defined as above, does in fact define a connection on 
(QMH), depends only on the choice of G and H. It is easily shown (Kobayashi and 
Nomizu 1963) that if g + ad(g), denotes the adjoint representation of G on 6, then 
the condition that G be a connection is that ad(H),N=N. (The same proof shows 
that A is a tensorial one-form of type (ad, N )  under this condition. This means that 
the components of the pull-back of A have a homogeneous transformation law under 
the action of H. These are clearly the massive 'gauge' fields which result from symmetry 
breaking.) Our aim here is to show that this condition is always met in the case of 
electroweak theories. 

By definition of the Lie derivative, and since the flow of any element A E 6 is of 
the form {Ra t }  (where a, is the one-parameter subgroup generated by A) ,  we have 

(3) [A, B ]  = lim (B  - ad(a;'),B)/t, 
t - 0  
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where B E 6. From this it is clear that the condition ad(H),N = N is equivalent to 
the condition 

[e, Nlc  N,  (4) 

provided that H is connected, which we shall assume to be the case (so that any 
element of H can be expressed as a product of factors drawn from the one-parameter 
subgroups generated by the elements of fi). 

Now let us consider the specific case of electroweak theories, in which G is 
semisimple or of the form (semisimple) x U(l), and H is a U(1) subgroup generated 
by some specific linear combination of elements drawn from the Cartan subalgebra 
of G. Let us consider first the case in which G is semisimple. If G1 is the Cartan 
subalgebra, then set 6 = 61062. Now it is well known (see, for example, Goto and 
Grosshans 1978) that 6 has a ‘root space decomposition’ of the form 

( 5 )  6 = L(0)0L(a1)OL(a2)0.  . . 
where the L(ai) (with cyo = 0) satisfy 

[L(ai), L(aj)l E Uai +ai), (6) 

and where L(0) is the Cartan subalgebra. Hence it is clear that [el, G2] c &. Now 
we also have 6 = f iON,  where fi is a one-dimensional space spanned by the charge 
operator. Setting 6, = fIOR, we have N = R 06,. Since R is a subspace of the 
Cartan subalgebra, which is Abelian, we have [A, NI = [A, 64. Since R c 61, this 
means that [R, NI c_ 161, 621 ,  and so 

(7) [R, NI E 6, EN. 

Thus the condition (4) is satisfied in this case. The case in which the Lie algebra is 
of the form (semisimple) x U( l )  may be treated similarly, since the hypercharge 
operator commutes with all the other generators. The extension to groups such as 
SU(2) x SU(2) x U( l )  is straightforward. 

4. Conclusion 

If (PMG) is a principal bundle with connection form w,  and if (QMH) is a reduced 
sub-bundle, then it is natural to attempt to define a connection on (QMH) by taking 
the connection form W on Q to be the fi component of the restriction of w to Q. 
This, indeed, is the way in which the gauge fields corresponding to the gauge symmetry 
H arise from those corresponding to G,  subsequent to the breakdown of G to H. In 
fact, however, 6 defined in this way does not invariably define a connection on the 
sub-bundle: in general, it will only do so if the condition ad(H) * N = N is met, where 
6 = f i O N .  This condition is also needed in order that the massive fields, which 
correspond to the N-component of the restriction of w to Q, should have the correct 
transformation behaviour under the action of H. We have found that in the cases in 
which G is semisimple or of the form (semisimple)xU(l), and in which H is a U(1) 
generated by a linear combination of elements drawn from the Cartan subalgebra of 
the Lie algebra of G, this condition is always satisfied. Thus, for gauge theories of 
the electroweak interaction, the symmetry-breaking process always yields a true 



3626 B T McInnes 

connection on the electromagnetic sub-bundle, that is, a photon field with the correct 
gauge transformation law. The situation as regards grand unified theories, in which 
the residual symmetry is typically SU(3) x U ( l ) ,  remains to be examined. 
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